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It is found that when the average kinetic energies of normal velocity components 
in decaying, grid-generated turbulence are equilibrated by a symmetric contrac- 
tion of the wind tunnel, this equality can persist downstream. A second result is 
further confirmation of the fact that the best power-law fit to the inverse turbu- 
lent energy during the early part of decay is near ( X - X J ~ ~ ~ ,  for both rod grids 
and disk grids. The Kolmogorov decay law N ( t  - tl)y is re-derived by a spectral 
method which is essentially equivalent to the original. Finally, a crude theoretical 
estimate of component energies in the straight duct after a weak contraction 
seems to support the experiments. 

1. Introduction 
The use of regular grids in a uniform stream to generate relatively simple 

turbulence may have begun with the work of Simmons & Salter (1934). Later 
measurements were made by Dryden, Schubauer, Mock & Skramstad (1937) and 
Dryden (1943); see also Taylor (19353, part 11), Corrsin (1942), Batchelor & 
Townsend (1947, 1948), Baines & Peterson (1951), Tsuji & Hama (1953), Grant 
& Nisbet (1957), Wyatt (1955) and others. It is remarkable that in spite of the 
strongly oriented and inhomogeneous character of the generator, the turbulent 
motion perhaps 40 or 50 mesh lengths downstream is statistically homogeneous 
(in planes parallel to the grid) almost within the accuracy of measurementst 
and is approximately isotropic. Since there is no residual mean shear, there is no 
continuing source of turbulent energy, and the turbulence decays with distance 
downstream. The rate of this energy decay is very nearly equal to the viscous 
dissipation rate, and has been one of the continuing objects of theoretical study 
since the pioneering paper on isotropic turbulence by Taylor (1935 b). 

In  order to improve the validity of a comparison between experiments on 
grid-generated turbulence and theories of isotropic turbulence, it is desirable to 
improve the degree of isotropy of the former. The spatial inhomogeneity due to 
decay in the downstream direction must ultimately limit the degree of isotropy 
attainable. The most obvious measure of anisotropy in the turbulence behind 
grids is the inequality between the mean-square values of the axial-velocity- 

t On leave from the University of Grenoble. 
$ See Corrsin (1963a) for remarks on the effects of grid solidity on homogeneity and 

turbulence level. 
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component fluctuation T2 and any transverse velocity component fluctuation 
v2 < u2. 

It was pointed out many years ago by Prandtl(l932) and Taylor (1935a) that 
a turbulent motion subjected to gross strain by passage through an axisym- 
metric area change in a tube will undergo selective changes in its axial and 
transverse turbulent energy levels due to the directionally selective vortex-line 
distortions. Their work has been followed up both theoretically and experi- 
mentally by a number of people (Ribner & Tucker 1953; Batchelor & Proudman 
1954; Townsend 1954; Uberoi 1956; Mills & Corrsin 1959). 

A contraction in the tube amplifies relatively the transverse-velocity fluctua- 
tions. Consequently, the test section of the wind tunnel we plan to use for grid- 
turbulence studies includes a slight contraction (area ratio 1-27), roughly chosen 
on the basis of earlier experiments, to compensate for the observed degree of 
anisotropy behind grids in uniform channels. 

This paper is a report on the performance of this device for making grid- 
generated turbulence more nearly isotropic, in terms of only the simple measure 
u’/v‘.t Similar experiments have been done by Uberoi & Wallis (1964), who 
concluded that downstream of the contraction the turbulence tends to return 
to its original state of anisotropy with u‘ larger than v‘. They suggest that this 
degree of inequality may be in some way associated with the inhomogeneity in 
the decaying field. 

The experiments reported here had other purposes as well; for example, one 
was to look for possible differences in the turbulence generated by a grid of square 
rods and a grid of round rods. Although round rods have been used more com- 
monly, one might expect that square rods would be less sensitive to Reynolds- 
number variations. On the other hand, Dumas (1964) found that grids with 
square rods had a tendency to generate large scale oscillatory motions spanning 
several meshes. To include a case with greater contrast in geometry, we also 
tested a grid made of flat disks. 

Finally, it  seemed desirable to make additional measurements of the turbulent- 
energy decay rate, expecially because the linear law for 1 / 2 -  recommended by 
Batchelor & Townsend for the ‘initial period’ from their data, has not appeared 
to be the best power-law fit to such experiments. 

_ _  

2. Fluid mechanical apparatus 
The wind-tunnel has a closed circuit and a test section lOm long, about 

1 x 1.3m in cross-section. The test section walls are sufficiently divergent that 
no measurable axial gradient in mean speed exists at  a speed of 20m/sec. Over the 
speed range the empty tunnel ‘turbulence’ levels (both u’/Uo and v’/Uo) range 
from 0.04 to 0.05 yo at the upstream end and 0.11 to 0.09 yo at the downstream 
end. These levels are on the tunnel axis. The excess of downstream disturbance 
over that upstream is presumably due to boundary-layer growth. This con- 
jecture is supported by the downstream reduction at  the higher speeds, which 

f The prime denotes root-mean-square value. 
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give thinner boundary layers. The boundary layer was turbulent over this range 
of speeds. 

Temperature fluctuations in the air stream were not detectable, although the 
mean temperature at  the top speed was 10 "C above that outside the tunnel. 

The test section and the slight secondary contraction, which is symmetric, are 
sketched in figure 1. The three possible grid locations are far enough downstream 
of duct area changes that the mean speed (outside the boundary layers) is 
uniform within the accuracy of measurement. 

56 cm 

Section 137 cm x 103 cm - 

950 cm - 

Contraction 1.27 to 1 

Section 122 cm x 91.5 c g  

15514551455 cm cm cm 

\ \  
Available locations for the grids 

FIGURE 1. Sketch of wind-tunnel test section, including contraction g h h g  
axially symmetric strain. 

The turbulence-generating grids were of three types : 
(1) a biplane group with square mesh, square rods; 
(2) a single biplane grid with square mesh but round rods; 
( 3 )  a single square-mesh grid of round disks. 

The first group were all of solidity (projected solid area per unit total area) 
(T = 0.34, with mesh sizes (distance between rod centre lines) N = 2.54cm, 
5.08 cm and 10-16 em. The single round-rod grid was included to provide a check 
with earlier studies, which used primarily this configuration. It had M = 5-08 cm 
but (T = 0.44. The intent was to have approximately the same pressure-drop 
coefficient, hence turbulence level, as the 5.08 ern square-rod grid (Corrsin 
1 9 6 3 ~ ) .  It fell a bit short; a higher (T would have risked general instability. The 
disk grid had M = 5.08 ern and (T CI An. Experiments were run on the collection 
of square-rod grids over a range of Reynolds numbers (A, = U,M/v) from 
1.7 x 104 to 1.35 x 105. U, is mean speed for the same mass flow rate in the empty 
part of the tunnel. Each grid was made in two sizes, one to fit upstream of the 
slight secondary contraction, the other to fit downstream. 

The square rods for the 2.54 ern grid were of polished brass. All other rods were 
of polished dural'. Rod crossings were pinned. The disks were 0.080 ern thick and 
were glued to the intersections of a square-mesh array of 0.084 cm piano wire. 

42-2 
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3. Measuring equipment and procedure 
All data were taken with platinum-( 10 yo) rhodium hot-wire anemometers, 

3.5 microns in diameter, about 0.4mm long, etched from Wollaston after being 
soldered to the tips of jewellers’ broaches. Most measurements of axial turbulent- 
velocity component u were made with a single wire set normal to the mean flow. 
The static sensitivity to u-fluctuations was determined directly by the local 
tangent of the empirical curve of voltage versus velocity. The air temperature 
was maintained constant to within 5 0.1 “C during calibration. 

The transverse velocity component v was measured with an X-meter.? The 
(inevitably) slightly different wires were subjected to enough difference in 
heating current to match their time constants. In  such devices the simple 
voltage difference, independent of u in an ideally symmetric meter, is dependent 
on u as well as on the primary input v. Therefore a weighted voltage difference is 
formed (el - Ke,), where K is the ratio of the two u-sensitivities. This weighted 
difference is then empirically related to v by rotarting the X-meter through a small 
angle in the ‘ plane ’ of the X, and measuring (el - Ke,) as a function of angle. 

Some check measurements of u’ were made with the X-meter. In  this case the 
ideal meter yields u from the voltage sum (el + e,). For a real meter the parasitic 
response of (el  + e,) to v is avoided by forming the weighted sum (el + K’eJ, where 
K’ is the ratio of the two v-sensitivities. The foregoing procedures are described 
more explicitly by Comte-Bellot & Mathieu (1958) and Comte-Bellot (1960). 

The parasitic response of the X-meter to w-fluctuations was negligible for both 
sum and difference operations. In  addition to the cross-responses, we ordinarily 
must take account of the effect of one velocity component in changing the 
sensitivity of the hot-wire array to the ‘primary’ component for each configura- 
tion. This effect is negligible in grid turbulence because the orthogonal com- 
ponents are uncorrelated. 

The basic electrical and electronic circuitry for the hot-wires was a Shapiro 
and Edwards constant-current unit. All turbulence levels were measured with 
the high-frequency cut-off set at a nominal value of 20,000 cycles/sec and the low- 
frequency cut-off at  1 cycle/sec. Compensation-circuit settings were determined 
with the built-in square-wave generator. Output signals were squared and 
averaged with the built-in vacuum thermocouple and galvanometer. 

Corrections for finite hot-wire length were negligible in the data reported here. 
Corrections for background (no grid) turbulence, for possible air-temperature 
fluctuations and for electronic noise were all made by subtracting from the mean 
square total signal the mean square signal in the empty tunnel at  the same 
position, speed and hot-wire condition. This is rather ad hoc for the first of these 
three effects because it assumes that the extraneous contributions are uncor- 
related with the primary turbulence under study. The correction was negligible 
in all cases except the large U,tlM region behind the 2.54cm grids, where it 
reached a maximum of 3 yo, t is travel time, grid to hot wire. 

The repeatability of the u’ or v’ values in a single run is estimated as within 
2 3 yo. Figure 6 shows little scatter on individual curves. On the other hand, the 

For all cases 7 = 2 within the accuracy of measurement. 
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absolute level of a curve varied from day to day by as much as f 4 %. In  order to 
minimize this effect (most likely a reflexion of inaccuracies in calibration for 
u- or v-sensitivity), each run was accompanied by measurement of a 'standard 
case' at each speed, and the absolute level was determined relative to this 
standard. For example, in the runs with U, = 20 m/sec, a standard was u' and v' 
at Uot/M = 42 behind the 5-08 em, square-rod grid upstream of the contraction. 
The values of u'/Uo and v'/Uo at this point were determined with relatively good 
precision by taking arithmetic means over ten measurements. 

4. Straight duct 
4.1. Component turbulent energies 

All biplane grids generated turbulence which was laterally homogeneous with& 
the accuracy of measurement for x /M > 40. x is the axial distance behind the 
grid, M is the grid mesh. For relative measurements involved in checking lateral 
homogeneity at  fixed x, the accuracy is estimated as 5 1 yo rather than the value 
& 2 yo indicated for the 'absolute ' turbulence-level determinations. Wall effects 
reduced the domain of lateral homogeneity to 16 in. x 28 in. far downstream, a t  
UotlM = 165 for the M = 2in. grids. 

This turbulence field is appreciably more homogeneous than that reported by 
Grant & Nisbet (1957) and somewhat more homogeneous than that obtained 
earlier with wooden rods (e.g. Corrsin 1942), metal rods (Corrsin 1963a) or 
metallic heating rods (Mills & Corrsin 1959). Manufacturing precision of the grids 
is indicated by the central 24in. x 24in. of the 5-08 cm mesh, square-rod grid; 
a maximum departure from mean gap width of f 0.7 %. The rods were uniform to 
within 0.8 yo maximum departure. The standard deviations were considerably 
smaller. 

The first result of interest here is the degree of inequality of turbulence com- 
ponents in the streamwise (axial) and transverse directions. A convenient 
measure is (u'lv') - 1. Figures 2, 3 and 4 show u'/v' versus Uot/M for the various 
grids. Uot/M, a dimensionless time, is used instead of x / M  to permit more direct 
comparison with the abscissae of similar plots for cases with a stream contraction, 
hence different U, for equal grid Reynolds number. 

Figure 2 collects the principal new results on u'lv' behind square-mesh, square- 
rod, biplane grids in a straight duct. The data for Uot/M > 40, the region of 
lateral homogeneity, are especially relevant. Consistent with most earlier reports, 
the axial-turbulence intensity is slightly greater than the transverse, there is 
a trend toward equality, and there is a possible but not unequivocal dependence 
on Reynolds number. The trend toward equality is so slow that, if extrapolated, 
it yields u' = v' where the turbulence is in its 'final ' (non-inertial, small Reynolds 
number) period. This extrapolation is, of course, not physically valid that far. 
Batchelor & Stewart (1950) have shown that far downstream behind a grid in 
a straight duct the strongly anisotropic largest 'eddies' (which have the longest 
relaxation times) are the dominant residuum. 

Figures 3 and 4 show basically the same character for u'/v' behind the round- 
rod grid a t  two Reynolds numbers and the disk grid. Figure 5 compares one data 
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set of figure 3 with some earlier results behind round rod grids. The range of 
anisotropies (u’lv’) - 1 is considerable, but it is always of the same sign. 

4.2. Decay rates 

It has long been customary to try to fit grid-turbulence-decay data with power 
laws over various periods during the lifetime of the turbulence. Power laws are 
not only analytically convenient, but also, since they are the forms most easily 
deduced by dimensional arguments, they make a nice target for theoretical 
analysis based on this simplest of techniques. 

Therefore, following for example Batchelor & Townsend, we try to find the 
best power laws for the data on 1 1 2  and 113. Since the actual grid location is 
irrelevant in the fully developed range, we use the empirical forms 

Since 2 + 2, there is little reason to use the same effective origin for both com- 
ponents. The procedure was to plot (1) and (2) on log paper and try ranges of 
values for t, and t,, seeking for each set of data the values which gave the longest 
straight lines. The slopes of these lines determined n, and n,, while the ordinate 
levels determined A ,  and A,. A typical case, with ‘optimum’ effective origins, is 
presented in figure 6. Obviously there is a slow approach toward equality. It is 
also interesting that the independently determined effective origins for the two 
power laws are virtually the same. A tabulation of the empirical constants in 
equations (1)  and (2) for a number of cases is presented in table 1. The brackets 
around some of the A ,  and A ,  values indicate three runs for which we neglected 
to check hot-wire sensitivities by comparison with the ‘ standard’ case. There- 
for A ,  and A ,  are there subject to the full & 4 yo uncertainty. 

In  all cases (see figures 2 and 3 ) 2  > v”, and in all cases the two curves are very 
slowly approaching each other with increasing Uot/M = x / M .  There is little dif- 
ference between the round-rod and square-rod cases. Even the round-disk-grid 
data show the same general character. The estimated uncertainties in UOtl,,/M 
are about & 1.0, and that in determining the exponents n,,, is about & 0.02. 

For the square-rod-grid geometry there is little trend with Reynolds number 
over the test range of 8 : 1 (a slight decrease in n, and increases in t,, A,  and A ,  
are beyond the scatter). The two repeated experiments indicate the magnitude 
of the scatter. There is slightly more disagreement between pairs of cases in 
which equal Reynolds numbers were obtained with different M .  This may reflect 
differences in manufacturing precision of the grids or effects of tunnel operation 
at different speeds (such as free-stream or boundary-layer state). 

As a quantitative measure of the rate of approach to component equality 
u2/v2 -+ 1, we might select 
_ _  
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or, since there are no extensive data on Lf, the integral scale of axial turbulence 
component in the axial direction (see equation (27)), 

d {(u'/v') - l}. 
1 

(u'lv') - 1 d(  U0t/M) (4) 

FIG~JRE 6.  Example ofu'andv'decay for a square-rod grid with M = 2.54cm, Uo = 20m/sec 
and without contraction. 0,  Ui /G with t, Uo/M = 2.5; 0, U;/V' with t 2  Uo/M = 2. 

These values are highly scakbred but all negative and of magnitude very much 
less than unity. We infer an approach toward isotropy, though a very slow one. 
Extrapolation of these empirical power-law curves to u.' = v' gives Uot/M values 
ranging from roughly a thousand to a hundred thousand, but no clear trends in 
terms of grid geometry or Reynolds number. 

Table 2 presents some of the same kinds of data as those in table 1, but for 
several earlier investigations. Notable differences from the present results are the 
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equality of 2 and 2 in the results of Batchelor & Townsend (in a sense later 
amended by Grant & Nisbet 1957), and the values n, = n2 = 1.0 determined from 
the data of Kistler & Vrebalovich (1961). 

- - 
Grid u2-decay v2-decay 

h - . -7 & 
RM uO 

( x (mjsec) (cm) B Type 

=l %z 
n, M A, nz M A ,  

1.5 13 1.27 1.5 20 
34 l7 20 lo} 2.54 0.34 Biplane, square rods {:::; 2.5 18 1.24 2 23 

2.5 (16) 1.21 3 (24) 
17 1.20 3 25 29 'i:} 5.08 0-34 Biplane, square rods 

34 
34 10- - - - 1.25 3 18 1.23 2.5 22 
68 20 - - - 1.27 3 (15) 1.23 2.5 (23) 

- - 1.24 3 21 1.23 2.5 24 68 20 - 

92 27 - - - 1.22 4 (21) 1.19 3 (28) 
4 22 1-18 3 26 {:::: 3.5 22 1.16 3 27 68 882 10.16 0.34 Biplane, square rods 

135 
2 23 1.24 2 37 

27 1.26 2 33 
5.9 1.32 2.5 7.5 6 
4.2 1.36 5 6.2 

K;; 2 
34 
68 

34 i:} 5.08 0.31 Disks 
68 

5.08 0.44 Biplane, round rods 

TABLE 1. Energy decay of grid turbulence 

Biplane grids 
RM uO 

Reference ( x (m/sec) 31 B Rods 

Corrsin (1942) 8.5 10.0 1-27cm 0.44 Rd. 
17 10.0 2.54 0.44 Rd. 
26 15.0 2.54 0.44 Rd. 

Batchelor 8z 5.5 6.43 1.27 0.34 Rd. 
Townsend 11 12-86 1-27 0-34 Rd. 

Baines & 24 8 4-45 0.44 Sq. 

Tsuji & Hama 33 10 5.0 0.36 Rd. 

Wyatt (1955) 11 6.25 2.54 0.34 Rd. 
22 12.5 2.54 0.34 Rd. 
44 12.5 5.08 0.34 Rd. 

Kistler & 2420 66 17.1 0.34 Rd. 

(1947, 1948) 

Petersen (1951) 

(1953) 

Vrebalovich ( p  = 4 atm) 
(1961) 

Uberoi (1963) 29 17 2.54 0.44 Rd. 

- 
&decay - 

n', AT 
ri,tl 

1.30 1 
1.28 3 
1.35 1 
1.13 5 
1-25 8 

- 
v2-decay 

-7- 

A ,  n,, M A ,  

20 1.22 1.5 59 
23 1.14 2.5 62 
17 1.16 1 58 

Ull t ,  

- - 70 - 

48 - - - 

- - 1.37 3 8.5 - 

I - 1.35 0 10 - 

uo t ,  
1.27 5 
1.27 3.5 NN n, NN - % 1-3A1 

1.0 9 71 1.0 7 110 

M 
1.25 4 35) 

1.20 4 24 1.20 4 35 

TABLE 2. Analysis of some previous decay results in terms of a power law 
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5. Slight contraction 
5.1, Component energies 

Assuming d/v’  values like those in table 2, our wind tunnel was designed with 
a slight secondary contraction (figure 1) with area ratio c = 1-27 based on the 
data of Uberoi (1956) and of Mills & Corrsin (1959), to give u’ w v’ after the strain. 
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FIG~JRE 7. Effect of 1.27:l contraction on the anisotropies of figure 2 (square rods). 
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Of course, a single area ratio cannot be correct for all grid geometries, all grid 
positions and all Reynolds numbers, but the results in figures 7-1 1 show that for 
several cases this particular area ratio is satisfactory. In no case here does the 
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primarily the possible dependence on Reynolds number. Four cases have the 
contraction located at U,,t/M = 18. With the largest grid this was not convenient, 
so it is relatively closer to the contraction, U,t/M = 9. Figures 8 and 9 show the 
round-rod and disk-grid results a t  two Reynolds numbers. 
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As for the straight duct, the decay data were empirically fitted by best power laws 
for 1/%2 and 113:  u,t Uot* nf -- u: __ -AT ( M  H )  ' ( 5 )  

U2 

In  contrast to equations (1) and (2),  these curves have been given the same 
effective origin, because the energies are more nearly equal. Attempts to select 
separate origins empirically led to no significant differences. 

Figure 12 shows a typical experiment in which 2 z v7 immediately after 
straining. The equality persists. Table 3 summarizes the several cases studied. 
The values of the exponents TL? and ng are essentially equal to each other and are 
roughly the same as in the straight duct, except for the cases with the contrac- 
tion located at U,t/M = 9. These latter include the largest-Reynolds-number 
case, but the difference does not appear to be a Reynolds-number effect because 
the cases of R, = 68 x lo3 with the 5.08 cm grids and €2, = 68 x lo3 with the 
10.16 cm grid (with contraction at  U,t/M = 18) are different from each other. 

For the experiments with contraction, the elapsed time is calculated from 

t =  w S& (7) 

U, is mean speed in the empty part of the duct approaching the grid. 
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r A 

tion ( x  (m/s) (em) (T Type M n; A;  TL,* A: 

1.29 19 1.28 18 (4" 1.27 20 1.29 19 
18M l7 i:) 2.54 0.34 Biplane, square rods 

34 
1.25 21 1.25 20 {::: 1.25 22 1.27 19 

34 i:} 5.08 0.34 Biplane, square rods 
68 

1.17 26 1.19 24 (E'5 1.16 27 1-15 28 
135 20 14.5 1.15 29 1.16 28 

gnf I: ::} 10.16 0.34 Biplane, squarerods 

1.24 35 1.24 34 {: 1.26 34 1.27 32 
18M 34 t:} 5.08 0.44 Biplane, round rods 

68 

18" 34 i:} 5.08 0.31 Disks 
68 

1.32 7.1 1.32 7.5 
(L.5 1.33 7.9 1.30 9.7 

TABLE 3. Energy decay of the grid turbulence after straining by the contraction 



Isotropy of grid-generated turbulence 67 1 

6. A simple derivation of Kolmogorov’s decay law for isotropic 
turbulence 

At large enough Reynolds numbers, stationary turbulence with only moderate 
levels of mean shear seems to be well described by Kolmogorov’s local-isotropy 
similarity theory in the large-wave-number range (Kolmogorov 1941 a ;  
Batchelor 1953; Grant, Stewart & Moilliet 1962; Gibson 1963). However, the 
Kolmogorov postulate that all statistical functions depend on only the dissipa- 
tion rate s and the kinematic viscosity v is not clearly applicable to decaying 
(fully) isotropic turbulence. As Goldstein (1951) pointed out, if the decay is 
relatively rapid we might expect spectra and other functions to depend on 
s, dsldt, etc. 

Nevertheless (Batchelor 1953), if the decay rate is slow enough compared with 
characteristic spectral times, e.g. the inertial time, apparently introduced by 
Onsager (1949), 

then the stationary Kolmogorov theory may be applicable at  each instant to 
decaying isotropic turbulence. &(k, t )  is the three-dimensional energy spectrum, 
k is the wave-number. The condition 

is a criterion for the wave number above which a quasi-stationary theory is a 
reasonable approximation. t is time. 

The corresponding shear-flow condition, for the wave-number above which 
the directional strain effect in destroying isotropy may be negligible compared 
with the orientation-losing cascade process, has been discussed by Corrsin (1957, 
1958) and Uberoi (1957). 

Kolmogorov’s second principal postulate is that when the Reynolds number 
is large enough that viscous effects are far removed from the start in k of the 
locally isotropic spectral region, there will exist an inertial subrange, a k-range 
in which statistical functions will depend only on s. The corresponding spectral 
form is & = Cdk-4. 

For any given kind of turbulent flow, it is well known that this locally isotropic, 
inertial subrange should be more extensive in k as the Reynolds number increases 
(Batchelor 1953; Corrsin 1958). In  fact, some rough theoretical estimates of gross 
turbulence properties at large Reynolds numbers have been found by replacing 
the entire turbulence spectrum by 

& ( k , t )  = 0 for 
0 6 k 6 k,, 
k > ( E / V 3 ) 4  = k,, 

kL is roughly the inverse of the integral scale of the turbulence (see Corrsin 1959, 
1964). 

For example, this yields an estimate C z 4, which can be compared with the 
experimental values of about 1-5 (Grant, et al. 1962; Gibson 1963). 
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The differential equation for energy decay rate in isotropic turbulence is 

- -€, 
1 a? 
2 at 
_ _  - 

where p2 = uiui, the squared resultant fluctuation. 

- 
$q2 = JOm d d k ,  and s = 2v 

Simple substitution of (1 1) into either side of (12) to  seek ?( t )  or e( t )  is incom- 
plete because kL(t)  enters as another unknown function: 

- 
Therefore $ q 2  M #(C€Q/kt), 

since kf 
q 2 ,  E and k, is needed. 

following two known properties: 

ki a t  large enough Reynolds numbers. An additional relation among 

The spectral model can be completed for this purpose by exploiting the 

(a)  In the neighbourhood of k = 0, 

- 

Q(k ,  t )  = B ( t )  k4 + {terms of higher order in k). (15) 

(b )  With (15) it  is obvious that 7, as defined in (8) becomes very large indeed 
as k+0. 

Consequently we choose a two-range model of the spectrum consisting of a 
‘permanent ’ part ( N k4) a t  small k and a decaying Kolmogorov part ( N k 4 )  at 
larger k < k,. The moving intersection of the two curves is taken to define k,(t), 
thereby providing the additional relation required to make the decay problem 
determinate (figure 13). Now we have 

b ( k , t )  = Bk4 for 0 < k < k,, (16) 

with B M const., to replace the first part of equation (1 1). 
With matching of the segments a t  k,, B is expressible in terms of C, E(t) and 

kL(t) ,  but its constancy is the property of principal use here. The formal con- 
nexion between ‘integral scale’ and & (Batchelor 1953) can be used to show that 
k, is approximately the inverse of an integral scale. The matching gives 

3 = CeQkiY.  (17) 
Putting this into the two-range model, and integrating to get the energy, we find 

- 17Cd $42 M -~ 
10 k f ’  

a slight improvement on (14). 
Eliminating k, between (18) and (17), we can express E in terms of for 

substitution into the decay equation. The resulting solution can be expressed as 
- 

l/q2 = D(t-t,)Y, (19) 

where D is a constant and t ,  is the hypothetical time a t  which I/? = 0. 
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This is just Kolmogorov’s ‘decay law’ (1941 b) .  His derivation assumed the 

(a )  constancy of the ‘Loitsianskii integral’ (1939): 
following : 

where 

application of (20) is concerned: 

A T ,  t )  = Ul(X1,  2 2 , 3 3 3 ,  t )  U l ( X 1  + r ,  x 2 ,  X 3 ,  t ) ;  

( b )  the full integral-scale similarity of the correlation function insofar as the 

A r ,  0 = U2,(t)fn{r/L(t)}; (21) 

(c) the inertial subrange form of p( N (1  - N d ) }  over an unspecified interval 
in r .  

t 

kL ( t 2 )  

FIGURE 13. Two-range model of ‘three-dimensional ’, isotropic inertial 
spectrum: schematic sketch. 

The present derivation differs only in that the Kolmogorov-inertial-subrange 
relation ( N k-t)  is applied over a specific spectral range and that no overall 
similarity statement appears. In  any case the present approach seems equivalent 
to the original one. In further agreement, it yields 

lfk, z L N (t - t1)% 

From equations (17) and (18), 
- 

B P 2 k - 5 ,  
17q L 

and if B is assumed approximately constant, 
- 
q2ki5  = const., (24) 

essentially the result of Kolmogorov deduced from (20) and (21). 
It was shown by Proudman & Reid (1954) under special assumptions, and by 

Batchelor & Proudman (1956) more generally that the Loitsianskii integral in 
43 Fluid Mech. 25 
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principle cannot be constant. Therefore the Kolmogorov law may have received 
less attention than it merits. We note that 10/7( z 1.43) is not very far from the 
average empirical exponent of about 1.2 to 1-35. In  fact Uberoi (1965) has 
reported values as large as 1.4, and our disk-grid turbulence was in that range. 

The point is that even though the Loitsianskii integral cannot be constant, its 
change is slow enough compared with the energy decay that taking the integral 
(or B )  constant? can still give a reasonable estimate of the decay rate. Using a 
time spectrum defined by (S), with & = Bk4 and (23) for B, and omitting numerical 
factors of order one, we find for the low k end of the spectrum 

rk/rD z (k,/k)f. 

rD = (kLq‘)-l is the time characterizing the energy decay (Batchelor 1953). 
Clearly rk/rD increases rapidly as k /kL  approaches zero. 

It is also interesting to seek a best power-law fit to experiments on the growth 
of the integral scales. Integral-scale measurements are much less numerous than 
those of turbulence level. We still have too few points in the present investigation 
to draw reliable curves, but the best power law fits of type 

L N (x-xl)m ( 2 6 )  

give the results in table 4 for ‘transverse’ and ‘longitudinal’ scales, L, and L, 
respectively. L, and L, refer to integrals of the von K k m h  & Howarth (1938) 
g( r )  and f ( r )  correlation-coefficient functions in isotropic turbulence: 

In these experiments the ‘g-like’ correlations are all 

U l ( X 1 1 2 2 ,  $3, t )  Ul(% 2 2  + r ,  239 t ) ,  

and the ‘f-like ’ correlations are all 

U l ( X l , %  x3, t )  u1(x1+ r ,  x 2 ,  x3, t ) .  

Some values of L, are determined from the (extrapolated) zero-frequency inter- 
cept of u1 spectra. 

The most extensive set of values appears to be that of Dryden, Schubauer, 
Mock & Skramstad (1937), but the scatter in these early data is too large for slope 
determination. The larger-Reynolds-number cases of Batchelor & Townsend 
(1948) were also rather scattered. 

The highly speculative conclusions which might be drawn from table 4 are: 
(a)  That the turbulence behind the grids in the straight ducts is not isotropic 

with respect to integral scales. The difference in growth rates for L, and L, makes 
it impossible for them to fulfill over appreciable distance the isotropic condition 
L, = 2L, (von KArmBn & Howarth 1938). On the other hand, the exponents for 
LB and L, in the turbulence strained by a slight contraction are roughly equal. 
It should be added that these preliminary data also show L, M 2L0. 

t It was pointed out by Lin (1947) that B is proportional to the Loitsianskii integral. 
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( b )  That the Kolmogorov + ( A  0.29) law may be fairly good in ‘properly’ 
strained grid turbulence. 

Deeper and more complete turbulence theories, such as that of Kraichnan 
(1959), will be able to predict the decay rate more accurately than will the 
Kolmogorov law. Yet simpler, less accurate theories can be a help in both 
application and understanding. 

Reference 

Corrsin (1942) 

Batchelor & Townsend 

Uberoi & Corrsin (1953) 

Mills, Kistler, O’Brien 

Present work 

(1948) 

& Corrsin (1957) 

RM 
( x 10-3) 

8.5 

2.8 
17 

13.2 
6.6 
7.3 

68 
34 
68 

Biplane grids 
& 
Rods (T 

Round 0.44 
Round 0.44 
Round 0.34 

Round 0.44 
Round 0.44 
Round 0.44 

Square 0.34 
Square 0.34 
Square 0.34 

Contrac- 
tion 

No 
No 
No 

No 
No 
N O  

No 
Yes 
Yes 

TABLE 4. Power-law exponent for integral-scale growth. 

Integral 
scale 

L“ 

m 

0.53 
0.49 
0.44 

0.48 
0.52 
0.30 

0.34 
0.40 
0.35 

A few words should be added about other simple, explicit decay estimates. 
The earliest is that of Taylor (1935 b), whose key assumption was constancy of the 
integral scales. This leads to 

1/42 N ( t  - t l ) 2 .  (28) 

Dryden (1943) carried the von KArm&n-Howarth (1938) similarity analysis a 
step beyond the original authors by retaining the viscous term in the two-point 
correlation equation, and observing that the only result consistent with full 
similarity is 

and (necessarily for any complete similarity) constant Reynolds number, 

(29) 

q‘L/v = const. (30) 

l/? N (t-t,), L N ( t - t l ) * ,  

Equation (29) has since been re-derived by others from a number of different 
starting-points. It gives fair agreement with experiment in grid turbulence over 
a limited distance and is taken by Batchelor (1953) to apply to the ‘initial 
period’. But any data which follow a smooth curve can be fitted over some 
distance by a straight line. In the previous sections we have seen that 
112 N (x - x ~ ) ~  fits the data over the largest distance for n somewhere between 
1.2 and 1.3. This seems a more accurate, empirical ‘initial period’ decay law. 

With a partial similarity assumption Lin (1948) arrived at a form somewhat 
like (29), but with an additional empirical constant. This permits a better fit to 
the experiments. 

It should be remarked parenthetically that Deissler’s (1960) computation of 
isotropic turbulence decay, with the ‘ correlation-discard ’ method of truncating 

43-2 
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the infinite hierarchy of moment equations, gives values of n and m which are 
roughly 1.3 and 0.4 if we use his figures 8 and 13, and select the common time 
origin which provides the longest pair of straight lines on log-log plots. Since this 
correlation-discard approximation is valid at  most for small Reynolds numbers, 
and can lead to negative energy spectra (Kraichnan 1963), the plausible values 
of n and m cannot be taken as confirmation in principle of the approximation. 

7. Justification for comparing steady grid turbulence with isotropic 
turbulent theories 

Since the connexion was begun by Taylor (1 935 b ) ,  it has been customary to 
compare theories of (necessarily non-stationary) isotropic turbulence with wind- 
tunnel measurements of (stationary) inhomogeneous turbulence behind grids. 
The technique of comparison is the assumption that time derivatives in a 
co-ordinate system travelling with the mean speed in the grid turbulence, i.e. 

can be identified with the time derivatives at a fixed point in truly isotropic 
turbulence having zero mean speed. 

Perhaps the first quantitative justification for such an approximation was the 
observation that the grid turbulence is indeed approximately isotropic (MacPhail 
1940). Furthermore, it  turns out (Corrsin 1963a) that a number of dimensionless 
measures of inhomogeneity due to decay 

L,dG L, an d L f  
2 ax’ n ax, ax 
_ _  _ _  __ 

are fairly small compared to unity for x /M > 40. h is a ‘Taylor microscale’. 
A slightly different view of the point is given by a rough estimate of the effect 

of differential transport of turbulent energy down the gradient. The turbulent 
energy equation in the transversely homogeneous region far behind a grid can 
be crudely represented by 

Here i q z  = 4uiui, the turbulent energy per unit mass, E is the viscous dissipation 
rate, and the last term (presumably small) is the net change in @ due to energy 
flux. There is energy flux due to turbulent convection, pressure-gradient work and 
viscous forces. The third of these is negligible relative to the first (Uberoi & 
Corrsin 1953). For an order of magnitude estimate, we suppose the transport 
term to represent both turbulence effects, and we approximate the ‘turbulent 
diffusivity ’ as 

9 z U’L,, 

an estimate which includes the replacing of an inherently Lagrangian scale by 
an Eulerian one (Corrsin 1963b). 
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With Ereplaced by the estimate in terms of integral scale, q13/L, (Taylor 1935 b,  
Batchelor 1953), and with dF/dx in the small term replaced by its value in (31) 
with the small term - 2eja neglected we can calculate the relative order 

We conclude that the effect of inhomogeneity-induced energy transfer on the 
decay rate is slight. 

8. A possible mechanism for energy inequality 
The new data reported here indicate that the condition 2 M 2 is retained 

after being forced by a contraction. The results of Uberoi & Wallis (1964), 
however, and the obvious fact that the inhomogeneous turbulence cannot be 
exactly isotropic both suggest a search for an explicit mechanism which might 
under some conditions tend to restore the inequality 2 > 3. 

The steady-state component-energy equations are 

In this mixed notation u = ul, v = u2 or u3, x = xl, y = x2 or x3, 
Since we shall restrict attention to axially symmetric turbulence, the 3 equation 
can represent WZ as well. 

For the special case with rectilinear mean flow in the x-direction, and trans- 
verse homogeneity these simplify to 

The static pressure terms exchange energy among velocity directional com- 
ponents (see, for example, Batchelor 1953). It is generally believed, though 
possibly not theoretically deducible from the equations of motion, that they tend 
to transfer energy from more energetic to less energetic components. With in- 
homogeneity, they also transport energy. The viscous terms include both dissipa- 
tion and transport. The former destroys component energy at a rate proportional 
to that energy, hence it is unlikely to enhance or create an inequality. The latter 
will be negligible compared with the turbulent transport (Uberoi & Corrsin 1953). 
Therefore the most likely possibility for generation of energy inequality is a 
difference in turbulent transport of component energies, the two first terms on 
the right sides of (36) and (37). For isotropic turbulence 2 and G2 are both 
identically zero. In  grid-generated turbulence in a straight channel measure- 
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ments show 2 negligiblet and, although does not seem to have been 
measured, it is probably negligible as well. Estimates follow shortly. 

However, one of the principal results of the contraction studies was the 
growth of lu31/u2% due to the strain (Mills & Corrsin 1959). In  a 4 : 1 contraction 
this grew to 0.08. Furthermore, it returned rapidly to zero in the straight section 
following the contraction. From (36) it  is clear that such a gradient in 2 will 
affect 2. 

We have no data on u> in contractions. However, a crude theoretical estimate 
was successful for 2 due to strain, so a similar analysis may be satisfactory for 
estimating 2. Following Mills & Corrsin (1959)) we deduce an approximate, 
steady-state equation for 2: 

Genevidve Comte-Bellot and Stanley Corrsin 

_ _  

The u-equation is found by subtracting the averaged x-component Navier-Stokes 
equation from the unaveraged one, in 
is then multiplied by u2 and averaged. 
assumptions : - - 

the manner of Reynolds. The u-equation 
Equation (38) results under the following 

(39) 

From the u- and v-momentum equations, we can deduce one for 3: 
__ ~~~ 

- auv2 a __ -w 1 2 ap ___ ~ up N N -- u2v2 + v2 - - - v - - - uv - + v ( 2uvV2v + v2V2u). (40) ax ax ax p ax p ay 

The largest mean-strain-rate terms in (40) have cancelled out by continuity. 
We have neglected the remaining mean-strain-rate terms such as v3aU/ay by 
comparison with the mean-strain-rate term in (38). 

Equations (38) and (40) can be exploited to estimate 2 and u T a t  the end of 
a weak, rapid contraction, supposing the entering turbulence is virtually isotropic 
To pare the analysis down as much as possible, we (a)  neglect the viscous terms; 
( b )  neglect the pressure terms because they are zero in the entering flow; (c) sup- 
pose u4 w 3G2 and u2v2 w u2v2. This ‘Millionstchikov hypothesis’ is known to 
lead to trouble in some problems (Kraichnan 1963). 

- -  

- __ -- 

The residual equations are, using total derivatives in this approximation, 
- - 

- dU3 - d o  -du2 u- w -3u3--3u2-, 
ax dx ax 

-dUV2 -dv2 u- M -d-. 
ax ax 

- - 

- -  
t lu3/(u2)%i is so small (< 0.002) as to be submerged in the noise level of standard hot- 

wire equipment (Mills & Corrsin 1959). P. s. Klebanoff & F. N. Frenkiel (private communi- 
cation) have recently found a much larger value, % 0.03, but this would not change the 
conclusions here. 
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The corresponding crude equations for 2- and %changes in the contraction, 
where mean-strain effects dominate, are 

- a 2  - dr7 u- z -2uz-) 
ax ax 

-a2 - a 0  u- M vz--. 
ax ax 

(43) 

(44) 

With these, (41) and (42) can be solved for 3 and & in terms of u ( x )  and the 
pre-contraction values, U p ,  u& vg : 

- -- 

The relevant dimensionless coefficients are expressible as 

Now the 2 and a at the end of our contraction can be estimated. Since 
-+ 1*27Dp and uk[cp M 0.03 (for cases with the contraction at UotjM = 18), 

_ -  
I u,"/u,"" = 0.034, 

(49) 

In order to use these numbers to estimate an order of energy inequality due 
to differential energy transport, we simplify (36) and (37) to 

- a v i  1 auv2 
ax 2 ax * 

These should give an upper bound on the growth of anisotropy for reasons men- 
tioned after (36) and (37). 

Where 2 and z2 have become again sensibly zero, an empirical event in the 
straight section following the contraction, 
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With .," = 2, a relevant dimensionless form is 

Genevidve Comte-Bellot and Stanley Corrsin 

This result yields the sign reported by Uberoi but, with the numerical values of 
(49), the effect is quite negligible-consistent with the present experiments. 
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the traversing apparatus, and Yi-shuong Kuo for his help in the laboratory. This 
work was supported by the U.S. National Science Foundation, Grant 621505. 
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